14 research outputs found

    Enhanced STS using Check Equation --Extended Version of the Signature scheme proposed in the PQCrypt2010--

    Get PDF
    We propose solutions to the problems which has been left in the Enhanced STS, which was proposed in the PQCrypto 2010. Enhanced STS signature scheme is dened as the public key with the Complementary STS structure, in which two STS public keys are symmetrically joined together. Or, the complementary STS is the public key where simply two STS public keys are joined together, without the protection with Check Equation. We discuss the following issues left in the Enhanced STS, which was prosented in the PQCrypt2010: (i) We implied that there may exist a way to cryptanalyze the Complementary STS structure. Although it has been proposed that the system be protected by Check Equations [35][37], in order to cope with an unknown attack, we did not show the concrete procedure. We show the actual procedure to cryptanalyze it and forge a signature. (ii) We assumed that the Check Equation should be changed every time a document is signed. This practice is not always allowed. We improved this matter. The Check Equation which was proposed in the PQCrypto 2010 dened the valid life as a function of the number of times the documents are signed, because the secret key of Check Equation is analyzed by collecting valid signatures. Now we propose a new method of integrating the Check Equation into the secret key and eliminate the risk of the hidden information drawn from the existing signature

    Organizational Cryptography for Access Control

    Get PDF
    A cryptosystem for granting/rescinding access permission is proposed, based on elliptic curve cryptography. The `Organizational Cryptosystem\u27 grants access permission not by giving secret (decription) key to the corresponding user but by converting the ciphertext so that the user can decript with their secret key. The `conversion key\u27 for the document, which is created from the secret key which the ciphertext has been originally encrypted for, the public key of the member who shall be permitted to read the ciphertext, and a part of the ciphertext. Therefore it is not possible to decrypt the ciphertext with the conversion key. Nor, for the administrator who issues the conversion key, to obtain any information about the plaintext

    Hidden Pair of Bijection Signature Scheme

    Get PDF
    A new signature system of multivariate public key cryptosys- tem is proposed. The new system, Hidden Pair of Bijection (HPB), is the advanced version of the Complementary STS system. This system real- ized both high security and quick signing. Experiments showed that the cryptanalysis of HPB by Gröbner bases has no less complexity than the random polynomial systems. It is secure against other way of cryptanalysis effective for Complementary STS. On the other hand, since it is based on bijections, signatures exist for any message, unlike other cryptosystems based on non-bijections such as HFE or Unbalanced Oil and Vinegar

    Proposal of Multivariate Public Key Cryptosystem Based on Modulus of Numerous Prime Numbers and CRT with Security of IND-CPA

    Get PDF
    We have proposed before a multivariate public key cryptosystem (MPKC) that does not rely on the difficulty of prime factorization, and whose modulus is the product of many small prime numbers. In this system, the prime factorization by the attackers is self-trivial, and the structure of the secret key is based on CRT (Chinese Remainder Theorem). In this paper we propose MPKC with security of IND-CPA by adding random numbers to central transformation vectors in the system proposed before

    Construction of the Tsujii-Shamir-Kasahara (TSK) Type Multivariate Public Key Cryptosystem, which relies on the Difficulty of Prime Factorization

    Get PDF
    A new multivariate public-key cryptosystem (MPKC) with the security based on the difficulty of the prime factoring is proposed. Unlike conventional cryptosystems such as RSA, most MPKCs are expected secure against quantum computers, and their operation of encryption and decryption is expected quick, because they do not need exponential operation. However, their security against quantum computers is very difficult to prove mathematically. We propose a new MPKC based on sequential solution method, assuming the security against von Neumann computers, whose attack seems as difficult as prime factoring. This cryptosystem is applicable to both encryption and signature

    Proposal of a Signature Scheme based on STS Trapdoor

    Get PDF
    A New digital signature scheme based on Stepwise Triangular Scheme (STS) is proposed. The proposed trapdoor has resolved the vulnerability of STS and secure against both Gröbner Bases and Rank Attacks. In addition, as a basic trapdoor, it is more efficient than the existing systems. With the efficient implementation, the Multivariate Public Key Cryptosystems (MPKC) signature public key has the signature longer than the message by less than 25 %, for example

    Proposal of PPS Multivariate Public Key Cryptosystems

    Get PDF
    In this paper we propose a new MPKC, called PPS, based on (i) the 2-layer nonlinear piece in hand method, (ii) PMI, and (iii) STS. The PPS is a specific MPKC obtained by applying the 2-layer nonlinear piece in hand method to STS, in the manner that the rank and randomness of the lower rank steps in the original secret polynomial vector of STS are enhanced by adding a perturbation polynomial vector and moreover PMI is used in the auxiliary part. The PPS overcomes the drawbacks of the three schemes by the advantage of the three schemes themself. Thus, PPS can be thought to be immune simultaneously from the algebraic attacks, such as the Groebner bases attacks, from the rank attacks, and from the differential attacks

    Security Enhancement of Various MPKCs by 2-layer Nonlinear Piece In Hand Method

    Get PDF
    Following the last proposal of the nonlinear Piece in Hand method, which has 3-layer structure, 2-layer nonlinear Piece in Hand method is proposed. Both of them aim at enhancing the security of existing and future multivariate public key cryptosystems. The new nonlinear Piece in Hand is compared with the 3-layer method and PMI+, which was proposed by Ding, et al

    3-Layer Public Key Cryptosystem with Short Tandem Repeat DNA

    Get PDF
    While the digital technology spreads through the society, reliable personal authentication is becoming an urgent issue. As shown in digital taxation (e-Tax) and blockchain, etc., high reliable link between the private key of a public key and the owner who has it in card or smartphone etc. is required. This paper proposes 3 layer public key cryptosystem in which Individual Number (a.k.a. My Number ) and STR (Short Tandem Repeat) as personal identification data installed. Individual Number is a national identification number issued by government, like social security number in USA. STR is a kind of DNA data which does not contain any subtle personal information such as inherited character and has very accurate personal identification. The proposed system satisfies requirements of integrity, soundness and zero knowledge characteristics which analog biometrics such as face authentications cannot provide
    corecore